LECTURE ON NON-ACYCLICITY CLASSES

ENLIN YANG

ABSTRACT. In this lecture, we introduce two classes supported on the non-acyclicity locus of a separated morphism relatively to a constructible sheaf. One is defined in a cohomological way by using localized categorical trace, another is constructed via geometric method by using Saito's characteristic cycle. As applications of these two classes,

- (1) We prove cohomological analogs of the Milnor formula and the conductor formula for constructible sheaves on (not necessarily smooth) varieties.
- (2) We propose a (relative version of) Milnor type formula for non-isolated singularities. This talk is based on joint work with Jiangnan Xiong and Yigeng Zhao.

Contents

1.	Introduction	1
2.	Cohomological non-acyclicity class	2
3.	Transversality condition	4
4.	Non-acyclicity classes	5
5.	Geometric non-acyclicity class	6
References		10

1. Introduction

1.1. Let k be a perfect field of characteristic p > 0 and $S = \operatorname{Spec} k$. Let Λ be a finite field of characteristic $\ell \neq p$. Let X be a smooth scheme over S and $f: X \to Y$ a flat morphism of finite type to a smooth curve Y over S. If f has an isolated singularity at a closed point $x_0 \in |X|$, there is an invariant $\mu(X/Y, x_0)$ supported on x_0 , called the Milnor number. The Milnor formula [4, Théorème 2.4] proved by Deligne says that the Milnor number is related to the total dimension at x_0 of the vanishing cycles $R\Phi(f, \Lambda)$ of f for the constant sheaf Λ , i.e.,

$$(1.1.1) \qquad (-1)^n \mu(X/Y, x_0) = -\operatorname{dimtot} R\Phi_{\overline{x}_0}(f, \Lambda),$$

where $n = \dim X$ and dimtot = dim+Sw denotes the total dimension. Later in [5], Deligne proposed a Milnor formula for any constructible sheaf \mathcal{F} of Λ -modules on X, which is realized and proved by Saito in [7]. If $x_0 \in |X|$ is at most an isolated characteristic point of f with respect to the singular support of \mathcal{F} , then Saito's theorem [7, Theorem 5.9] says

$$(CC(\mathcal{F}), df)_{T^*X, x_0} = -\operatorname{dimtot} R\Phi_{\overline{x}_0}(f, \mathcal{F}),$$

where $CC(\mathcal{F})$ is the characteristic cycle of \mathcal{F} . Now we propose the following question:

Question 1.2. Is there a Milnor type formula for non-isolated singular/characteristic points?

1.3. If f is a projective flat morphism and if f is smooth outside $f^{-1}(y)$ for a closed point y of the curve Y, then the conductor formula of Bloch (cf. [8, Theorem 2.2.3 and Corollary 2.2.4])

$$(1.3.1) -a_y(Rf_*\Lambda) = (-1)^n(X,X)_{T^*X,X_y} = (-1)^n \operatorname{deg} c_{n,X_y}^X(\Omega_{X/Y}^1) \cap [X]$$

gives a partial answer to the Question 1.1.2. We view (1.1.1), (1.1.2) and (1.3.1) in the form

(1.3.2) deg(Geometric class on singular locus) = deg(Cohomology class on singular locus).

In a joint work with Yigeng Zhao [12], we introduce a (cohomological) non-acyclicity class which is supported on non-acyclicity locus. Let $X \to S$ be a separated morphism between schemes of finite type over k. Let $Z \subseteq X$ be a closed subscheme and $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$ such that $X \setminus Z \to S$ is universally locally acyclic relatively to $\mathcal{F}|_{X \setminus Z}$. Then the cohomological non-acyclicity class $\widetilde{C}_{X/Y/k}^Z(\mathcal{F})$ is a class supported on Z (in $H_Z^0(X,\mathcal{K}_{X/Y/k})$). In a joint work with Jiangnan Xiong [10], we construct its geometric counterpart. More precisely, when f is a morphism between smooth schemes over k such that $X \to S$ is $SS(\mathcal{F})$ -transversal outside Z, then we construct a class $cc_{X/Y/k}^Z(\mathcal{F}) \in \mathrm{CH}_0(Z)$ (cf. (5.5.8)), called the geometric non-acyclicity class of \mathcal{F} . If moreover dim $Z < \dim Y$, then we have the following fibration formula (5.5.8)

$$(1.3.3) cc_{X/k}(\mathcal{F}) = c_{\dim Y}(f^*\Omega_{Y/k}^{1,\vee}) \cap cc_{X/k}(\mathcal{F}) + cc_{X/Y/k}^Z(\mathcal{F}).$$

We prove that the formation of the geometric non-acyclicity class is compatible with pullback (5.9.2) and proper push-forward (5.11.1). It also satisfies Saito's Milnor formula (5.7.1) and a conductor formula (5.12.1). It is natural to expect the following conjecture holds:

Conjecture 1.4 (Conjecture 5.8). We have

(1.4.1)
$$\widetilde{C}_{X/Y/k}^{Z}(\mathcal{F}) = \widetilde{\operatorname{cl}}(cc_{X/Y/k}^{Z}(\mathcal{F})) \quad \text{in} \quad \operatorname{CH}_{0}(Z),$$

where $\widetilde{\operatorname{cl}}: \operatorname{CH}_0(Z) \to H^0_Z(X, \mathcal{K}_{X/Y/k})$ is the cycle class map.

We hope (1.4.1) gives a answer to Question 1.2 in some sense.

Notation and Conventions.

- (1) Let S be a Noetherian scheme and Sch_S the category of separated schemes of finite type over S. Let Λ be a Noetherian ring such that $m\Lambda = 0$ for some integer m invertible on S unless otherwise stated explicitly.
- (2) For any scheme $X \in \operatorname{Sch}_S$, we denote by $D_{\operatorname{ctf}}(X,\Lambda)$ the derived category of complexes of Λ -modules of finite tor-dimension with constructible cohomology groups on X.
- (3) For any separated morphism $f: X \to Y$ in Sch_S , we use the following notation

$$\mathcal{K}_{X/Y} = Rf^! \Lambda, \quad D_{X/Y}(-) = R\mathcal{H}om(-, \mathcal{K}_{X/Y}).$$

(4) To simplify our notation, we omit to write R or L to denote the derived functors unless otherwise stated explicitly or for $R\mathcal{H}om$.

2. Cohomological non-acyclicity class

2.1. Consider a commutative diagram in Sch_S :

$$Z \xrightarrow{\tau} X \xrightarrow{f} Y,$$

$$(2.1.1)$$

where $\tau: Z \to X$ is a closed immersion and g is a smooth morphism. Let us denote the diagram (2.1.1) simply by $\Delta = \Delta_{X/Y/S}^Z$ Let $\mathcal{F} \in D_{\mathrm{ctf}}(X, \Lambda)$ such that $X \setminus Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X \setminus Z}$ and that $h: X \to S$ is universally locally acyclic relatively to \mathcal{F} .

2.2. In [12], we introduce an object $\mathcal{K}_{\Delta} = \mathcal{K}_{X/Y/S}$ sitting in a distinguished triangle (cf. [12, (4.2.5)])

$$(2.2.1) \mathcal{K}_{X/Y} \to \mathcal{K}_{X/S} \to \mathcal{K}_{\Delta} \xrightarrow{+1} .$$

and a cohomological class $C^Z_{\Delta}(\mathcal{F}) = \widetilde{C}^Z_{X/Y/S}(\mathcal{F})$ in $H^0_Z(X, \mathcal{K}_{\Delta})$. We call $C^Z_{\Delta}(\mathcal{F})$ the non-acyclicity class of \mathcal{F} . If the following condition holds:

(2.2.2)
$$H^0(Z, \mathcal{K}_{Z/Y}) = 0 \text{ and } H^1(Z, \mathcal{K}_{Z/Y}) = 0$$

then the map $H_Z^0(X, \mathcal{K}_{X/S}) \xrightarrow{(2.2.1)} H_Z^0(X, \mathcal{K}_{X/Y/S})$ is an isomorphism. In this case, the class $\widetilde{C}_{X/Y/S}^Z(\mathcal{F}) \in H_Z^0(X, \mathcal{K}_{X/Y/S})$ defines an element of $H_Z^0(X, \mathcal{K}_{X/S})$. Now we summarize the functorial properties for the non-acyclicity classes (cf. [12, Theorem 1.9, Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Proposition 2.3. Let us denote the diagram (4.2.1) simply by $\Delta = \Delta_{X/Y/S}^Z$ and $\widetilde{C}_{X/Y/S}^Z(\mathcal{F})$ by $C_{\Delta}(\mathcal{F})$. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$. Assume that $Y \to S$ is smooth, $X \setminus Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X \setminus Z}$ and that $X \to S$ is universally locally acyclic relatively to \mathcal{F} .

(1) (Fibration formula) If $H^0(Z, \mathcal{K}_{Z/Y}) = H^1(Z, \mathcal{K}_{Z/Y}) = 0$, then we have

$$(2.3.1) C_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap C_{X/Y}(\mathcal{F}) + C_{\Delta}(\mathcal{F}) \quad \text{in} \quad H^0(X, \mathcal{K}_{X/S}).$$

(2) (Pull-back) Let $b: S' \to S$ be a morphism of Noetherian schemes. Let $\Delta' = \Delta_{X'/Y'/S'}^{Z'}$ be the base change of $\Delta = \Delta_{X/Y/S}^{Z}$ by $b: S' \to S$. Let $b_X: X' = X \times_S S' \to X$ be the base change of b by $X \to S$. Then we have

(2.3.2)
$$b_X^* C_{\Delta}(\mathcal{F}) = C_{\Delta'}(b_X^* \mathcal{F}) \text{ in } H_{Z'}^0(X', \mathcal{K}_{X'/Y'/S'}),$$

where $b_X^*: H_Z^0(X, \mathcal{K}_{X/Y/S}) \to H_{Z'}^0(X', \mathcal{K}_{X'/Y'/S'})$ is the induced pull-back morphism.

(3) (Proper push-forward) Consider a diagram $\Delta' = \Delta_{X'/Y/S}^{Z'}$. Let $s: X \to X'$ be a proper morphism over Y such that $Z \subseteq s^{-1}(Z')$. Then we have

(2.3.3)
$$s_*(C_{\Delta}(\mathcal{F})) = C_{\Delta'}(Rs_*\mathcal{F}) \text{ in } H^0_{Z'}(X', \mathcal{K}_{X'/Y/S}),$$

where $s_*: H^0_Z(X, \mathcal{K}_{X/Y/S}) \to H^0_{Z'}(X', \mathcal{K}_{X'/Y/S})$ is the induced push-forward morphism.

(4) (Cohomological Milnor formula) Assume $S = \operatorname{Spec} k$ for a perfect field k of characteristic p > 0 and Λ is a finite local ring such that the characteristic of the residue field is invertible in k. If Y is a smooth connected curve over k and $Z = \{x\}$, then we have

(2.3.4)
$$C_{\Delta}(\mathcal{F}) = -\operatorname{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, f) \quad \text{in} \quad \Lambda = H_x^0(X, \mathcal{K}_{X/k}),$$

where $R\Phi(\mathcal{F}, f)$ is the complex of vanishing cycles and dimtot = dim + Sw is the total dimension.

(5) (Cohomological conductor formula) Assume S = Speck for a perfect field k of characteristic p > 0 and Λ is a finite local ring such that the characteristic of the residue field is invertible in k. If Y is a smooth connected curve over k and $Z = f^{-1}(y)$ for a closed point $y \in |Y|$, then we have

(2.3.5)
$$f_*C_{\Delta}(\mathcal{F}) = -a_y(Rf_*\mathcal{F}) \quad \text{in} \quad \Lambda = H_y^0(Y, \mathcal{K}_{Y/k}),$$

where $a_y(\mathcal{G}) = \operatorname{rank} \mathcal{G}|_{\bar{\eta}} - \operatorname{rank} \mathcal{G}_{\bar{y}} + \operatorname{Sw}_y \mathcal{G}$ is the Artin conductor of the object $\mathcal{G} \in D_{\operatorname{ctf}}(Y, \Lambda)$ at y and η is the generic point of Y.

The formation of non-acyclicity classes is also compatible with specialization maps (cf. [12, Proposition 4.17]). We call (2.3.1) the fibration formula for characteristic class, which is motivated from [9].

2.4. Let X be a smooth connected curve over k. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X, \Lambda)$ and $Z \subseteq X$ be a finite set of closed points such that the cohomology sheaves of $\mathcal{F}|_{X \setminus Z}$ are locally constant. By the cohomological Milnor formula (2.3.4), we have the following (motivic) expression for the Artin conductor of \mathcal{F} at $x \in Z$

(2.4.1)
$$a_x(\mathcal{F}) = \operatorname{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, \operatorname{id}) = -C_{U/U/k}^{\{x\}}(\mathcal{F}|_U),$$

where U is any open subscheme of X such that $U \cap Z = \{x\}$. By (2.3.1), we get the following cohomological Grothendieck-Ogg-Shafarevich formula (cf. [12, Corollary 6.6]):

$$(2.4.2) C_{X/k}(\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot c_1(\Omega_{X/k}^{1,\vee}) - \sum_{x \in Z} a_x(\mathcal{F}) \cdot [x] \quad \text{in} \quad H^0(X, \mathcal{K}_{X/k}).$$

3. Transversality condition

3.1. We recall the transversality condition introduced in [12, 2.1], which is a relative version of the transversality condition studied by Saito [7, Definition 8.5]. Consider the following cartesian diagram in Sch_S :

$$(3.1.1) X \xrightarrow{i} Y \\ p \downarrow \qquad \qquad \downarrow f \\ W \xrightarrow{\delta} T.$$

Let $\mathcal{F} \in D_{\mathrm{ctf}}(Y,\Lambda)$ and $\mathcal{G} \in D_{\mathrm{ctf}}(T,\Lambda)$. Let $c_{\delta,f,\mathcal{F},\mathcal{G}}$ be the composition

$$(3.1.2) c_{\delta,f,\mathcal{F},\mathcal{G}} : i^*\mathcal{F} \otimes^L p^*\delta^!\mathcal{G} \xrightarrow{id\otimes b.c} i^*\mathcal{F} \otimes^L i^!f^*\mathcal{G}$$

$$\xrightarrow{\text{adj}} i^!i_!(i^*\mathcal{F} \otimes^L i^!f^*\mathcal{G})$$

$$\xrightarrow{\text{proj.formula}} i^!(\mathcal{F} \otimes^L i_!i^!f^*\mathcal{G}) \xrightarrow{\text{adj}} i^!(\mathcal{F} \otimes^L f^*\mathcal{G}).$$

We put $c_{\delta,f,\mathcal{F}} := c_{\delta,f,\mathcal{F},\Lambda} : i^*\mathcal{F} \otimes^L p^*\delta^!\Lambda \to i^!\mathcal{F}$. If $c_{\delta,f,\mathcal{F}}$ is an isomorphism, then we say that the morphism δ is \mathcal{F} -transversal.

By [12, 2.11], there is a functor $\delta^{\Delta}: D_{\mathrm{ctf}}(Y,\Lambda) \to D_{\mathrm{ctf}}(X,\Lambda)$ such that for any $\mathcal{F} \in D_{\mathrm{ctf}}(Y,\Lambda)$, we have a distinguished triangle

$$(3.1.3) i^* \mathcal{F} \otimes^L p^* \delta^! \Lambda \xrightarrow{c_{\delta,f,\mathcal{F}}} i^! \mathcal{F} \to \delta^{\Delta} \mathcal{F} \xrightarrow{+1}.$$

 δ is \mathcal{F} -transversal if and only if $\delta^{\Delta}(\mathcal{F})=0$ (cf. [12, Lemma 2.12]).

The following lemma gives an equivalence between transversality condition and (universally) locally acyclicity condition.

Lemma 3.2. Let $f: X \to S$ be a morphism of finite type between Noetherian schemes and $\mathcal{F} \in D_{\text{ctf}}(X, \Lambda)$. The following conditions are equivalent:

- (1) The morphism f is locally acyclic relatively to \mathcal{F} .
- (2) The morphism f is universally locally acyclic relatively to \mathcal{F} .

(3) For any $\mathcal{G} \in D_{\mathrm{ctf}}(X,\Lambda)$, the canonical map

$$(3.2.1) D_{X/S}(\mathcal{G}) \boxtimes^{L} \mathcal{F} \to R\mathcal{H}om(\operatorname{pr}_{1}^{*}\mathcal{G}, \operatorname{pr}_{2}^{!}\mathcal{F})$$

is an isomorphism.

(4) The canonical map

$$(3.2.2) D_{X/S}(\mathcal{F}) \boxtimes^{L} \mathcal{F} \to R\mathcal{H}om(\operatorname{pr}_{1}^{*}\mathcal{F}, \operatorname{pr}_{2}^{!}\mathcal{F})$$

is an isomorphism.

(5) For any cartesian diagram between Noetherian schemes

$$(3.2.3) Y \times_S X \xrightarrow{\operatorname{pr}_2} X \\ \operatorname{pr}_1 \downarrow \qquad \qquad \qquad \downarrow f \\ Y \xrightarrow{\delta} S$$

the morphism δ is \mathcal{F} -transversal.

- (6) For any cartesian diagram (3.2.3) and any $\mathcal{G} \in D_{\mathrm{ctf}}(S,\Lambda)$, the morphism $c_{\delta,f,\mathcal{F},\mathcal{G}}$ is an isomorphism.
- (7) For any cartesian diagram between Noetherian schemes

$$(3.2.4) Y \times_S X \xrightarrow{\operatorname{pr}_2} X' \longrightarrow X$$

$$\downarrow^{\operatorname{pr}_1} \qquad \qquad \downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f}$$

$$Y \xrightarrow{\delta} S' \longrightarrow S,$$

the morphism δ is $\mathcal{F}|_{X'}$ -transversal.

(8) For any cartesian diagram (3.2.4) and any $\mathcal{G} \in D_{\mathrm{ctf}}(S,\Lambda)$, the morphism $c_{\delta,f,\mathcal{F},\mathcal{G}}$ is an isomorphism.

When S is a scheme of finite type over a field k, then the equivalence between (2) and (7) follows from [12, Proposition 2.4.(2) and Proposition 2.5]. In this case, we may require Y and S' smooth over k in (7).

4. Non-acyclicity classes

4.1. Let S be a Noetherian scheme and Sch_S the category of separated schemes of finite type over S. Let Λ be a Noetherian ring such that $m\Lambda = 0$ for some integer m invertible on S. Consider the following cartesian diagram in Sch_S

$$(4.1.1) X \times_S Y \xrightarrow{\operatorname{pr}_1} X \\ \operatorname{pr}_2 \downarrow \qquad \qquad \downarrow h \\ Y \xrightarrow{g} S.$$

where pr_1 and pr_2 are the projections. For any $\mathcal{F} \in D_{\operatorname{ctf}}(X,\Lambda)$ and $\mathcal{G} \in D_{\operatorname{ctf}}(Y,\Lambda)$, we have canonical morphisms

$$\mathcal{F} \boxtimes_{S}^{L} \mathcal{K}_{Y/S} = \operatorname{pr}_{1}^{*} \mathcal{F} \otimes^{L} \operatorname{pr}_{2}^{*} g^{!} \Lambda \xrightarrow{c_{g,h,\mathcal{F}}} \operatorname{pr}_{1}^{!} \mathcal{F},$$

$$(4.1.3) \mathcal{F} \boxtimes_{S}^{L} D_{Y/S}(\mathcal{G}) \to R\mathcal{H}om(\operatorname{pr}_{2}^{*}\mathcal{G}, \operatorname{pr}_{1}^{!}\mathcal{F}),$$

where (4.1.3) is adjoint to

$$\mathcal{F} \boxtimes_{S}^{L} (D_{Y/S}(\mathcal{G}) \otimes^{L} \mathcal{G}) \xrightarrow{id \boxtimes \text{ev}} \mathcal{F} \boxtimes_{S}^{L} \mathcal{K}_{Y/S} \xrightarrow{(4.1.2)} \text{pr}_{1}^{!} \mathcal{F}.$$

Note that (4.1.2) is a special case of (4.1.3) by taking $\mathcal{G} = \Lambda$. If moreover $X \to S$ is universally locally acyclic relatively to \mathcal{F} , then (4.1.3) is an isomorphism by [6, Proposition 2.5](see also [11, Corollary 3.1.5]). For a morphism $c = (c_1, c_2) : C \to X \times_S Y$, we have a canonical isomorphism by [3, Corollaire 3.1.12.2]

$$(4.1.5) R\mathcal{H}om(c_2^*\mathcal{G}, c_1^!\mathcal{F}) \xrightarrow{\simeq} c^! R\mathcal{H}om(\operatorname{pr}_2^*\mathcal{G}, \operatorname{pr}_1^!\mathcal{F}).$$

4.2. Consider a commutative diagram in Sch_S :

$$Z \xrightarrow{\tau} X \xrightarrow{f} Y,$$

$$X \xrightarrow{f} Y,$$

$$Y \xrightarrow{f} Y,$$

$$Y \xrightarrow{f} Y,$$

$$Y \xrightarrow{f} Y$$

where $\tau: Z \to X$ is a closed immersion and g is a smooth morphism. Let $i: X \times_Y X \to X \times_S X$ be the base change of the diagonal morphism $\delta: Y \to Y \times_S Y$:

$$\begin{array}{cccc}
X & & & X \\
\downarrow \delta_1 & & & & \downarrow \delta_0 \\
X \times_Y X & \xrightarrow{i} X \times_S X \\
\downarrow p & & & & \downarrow f \times f \\
Y & \xrightarrow{\delta} Y \times_S Y,
\end{array}$$

where δ_0 and δ_1 are the diagonal morphisms. Put $\mathcal{K}_{X/Y/S} := \delta^{\Delta} \mathcal{K}_{X/S} \simeq \delta_1^* \delta^{\Delta} \delta_{0*} \mathcal{K}_{X/S}$. We have the following distinguished triangle (cf. [12, (4.2.5)])

$$(4.2.3) \mathcal{K}_{X/Y} \to \mathcal{K}_{X/S} \to \mathcal{K}_{X/Y/S} \xrightarrow{+1} .$$

Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$ such that $X \setminus Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X \setminus Z}$ and that $h: X \to S$ is universally locally acyclic relatively to \mathcal{F} . We put

$$(4.2.4) \mathcal{H}_S = R\mathcal{H}om_{X\times_S X}(\operatorname{pr}_2^*\mathcal{F}, \operatorname{pr}_1^!\mathcal{F}), \mathcal{T}_S = \mathcal{F} \boxtimes_S^L D_{X/S}(\mathcal{F}).$$

Lemma 4.3. $\delta_1^* \delta^{\Delta} \mathcal{T}_S$ is supported on Z.

The relative cohomological characteristic class $C_{X/S}(\mathcal{F})$ is the composition (cf. [12, 3.1])

$$(4.3.1) \qquad \Lambda \xrightarrow{\mathrm{id}} R\mathcal{H}om(\mathcal{F}, \mathcal{F}) \xrightarrow{(4.1.5)} \delta_0^! \mathcal{H}_S \xrightarrow{(4.1.3)} \delta_0^! \mathcal{T}_S \to \delta_0^* \mathcal{T}_S \xrightarrow{\mathrm{ev}} \mathcal{K}_{X/S}.$$

The non-acyclicity class $\widetilde{C}_{X/Y/S}^{Z}(\mathcal{F})$ is the composition (cf. [12, Definition 4.6])

$$(4.3.2) \qquad \Lambda \to \delta_0^! \mathcal{H}_S \stackrel{\simeq}{\leftarrow} \delta_0^! \mathcal{T}_S \simeq \delta_1^! i^! \mathcal{T}_S \to \delta_1^* i^! \mathcal{T}_S \to \delta_1^* \delta^\Delta \mathcal{T}_S \stackrel{\simeq}{\leftarrow} \tau_* \tau^! \delta_1^* \delta^\Delta \mathcal{T}_S \to \tau_* \tau^! \mathcal{K}_{X/Y/S}.$$

5. Geometric non-acyclicity class

Now we construct a geometric counterpart of the cohomological non-acyclicity class. Let k be a perfect field of characteristic p and Λ be a finite local ring whose residue field is of characteristic $\ell \neq p$. We first recall geometric transversal condition.

5.1. Let X be a smooth scheme of dimension d over k and $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$. We need Beilinson's singular support $SS(\mathcal{F})$, which a d-dimensional conical closed subset of the cotangent bundle T^*X). We also need Saito's characteristic cycle $CC(\mathcal{F})$, which is a d-cycle supported on $SS(\mathcal{F})$ with integral coefficients. The characteristic cycle $CC(\mathcal{F})$ is characterized by a Milnor formula for isolated characteristic points.

We say a morphism $f: X \to S$ to a smooth scheme S is $SS(\mathcal{F})$ -transversal if $df^{-1}(SS(\mathcal{F}))$ is contained in the zero section of $T^*S \times_S X$, where $df: T^*S \times_S X \to T^*X$ is induced morphism on vector bundles. We have the following fact:

Lemma 5.2. If $f: X \to S$ is $SS(\mathcal{F})$ -transversal, then f is universally locally acyclic relatively to \mathcal{F} .

5.3. Let S be a smooth connected scheme of dimension s over k. Let $f: X \to S$ be a morphism in Sm_k . Let $\mathcal{F} \in D_{ctf}(X, \Lambda)$ such that f is $SS(\mathcal{F})$ -transversal. Consider the following morphisms

$$(5.3.1) X \xrightarrow{0} T^*S \times_S X \xrightarrow{df} T^*X,$$

where 0 stands for the zero section. By assumption $df^{-1}(SS(\mathcal{F}))$ is contained in O(X). We define the relative characteristic class of \mathcal{F} to be the following s-cycle class on X:

$$(5.3.2) cc_{X/S}(\mathcal{F}) := (-1)^s \cdot (df)!(CC(\mathcal{F})) in CH_s(X),$$

where $(df)^!$ is the refined Gysin pullback. We don't know how to define $cc_{X/S}(\mathcal{F})$ if one only assume f is universally locally acyclic relatively to \mathcal{F} .

If f is a smooth morphism of relative dimension r and if \mathcal{F} is locally constant, then we have

$$(5.3.3) cc_{X/S}(\mathcal{F}) = (-1)^s \cdot 0_{X/S}^!((-1)^{\dim X} \cdot \operatorname{rank} \mathcal{F} \cdot [X]) = \operatorname{rank} \mathcal{F} \cdot c_r(\Omega_{X/S}^{1,\vee}) \cap [X].$$

We propose the following conjecture:

Conjecture 5.4. Let S be a smooth connected scheme of dimension s over k. Let $f: X \to S$ be a morphism in Sm_k . Let $\mathcal{F} \in D_{\operatorname{ctf}}(X,\Lambda)$ such that f is $SS(\mathcal{F})$ -transversal. Then we have

(5.4.1)
$$\operatorname{cl}(cc_{X/S}(\mathcal{F})) = C_{X/S}(\mathcal{F}) \quad \text{in} \quad H^0(X, \mathcal{K}_{X/S}),$$

where $cl: CH_s(X) \to H^0(X, \mathcal{K}_{X/S})$ is the cycle class map.

When $S = \operatorname{Spec} k$, then it is Saito's conjecture [7, Conjecture 6.8.1], which is proved under quasiprojective assumption in [12, Theorem 1.3]. When $f: X \to S$ is a smooth morphism, then (5.4.1) is true for a locally constant constructible (flat) sheaf \mathcal{F} of Λ -modules. Indeed, this follows from (5.3.3), [12, Lemma 3.3] and (2.3.1).

5.5. Consider a commutative diagram in Sm_k :

$$(5.5.1) Z \xrightarrow{\tau} X \xrightarrow{f} Y ,$$

where $\tau: Z \to X$ is a closed immersion and g is a smooth morphism of relative dimension r. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$ such that $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal and that $X \to S$ is $SS(\mathcal{F})$ -transversal.

We have a commutative diagram on vector bundles

where dg_X is the base change of dg. By assumption, $df^{-1}(SS(\mathcal{F}))$ is supported on $0(X) \cup T^*Y \times_Y Z$ and $dh^{-1}(SS(\mathcal{F})) = dg_X^{-1}df^{-1}(SS(\mathcal{F}))$ is contained in the zero section $0(X) \subseteq T^*S \times_S X$. We define the geometric non-acyclicity class $cc_{X/Y/S}^Z(\mathcal{F})$ of \mathcal{F} to be

(5.5.3)
$$cc_{X/Y/S}^{Z}(\mathcal{F}) := (-1)^{s} \cdot dg_{X}^{!}(df^{!}(CC(\mathcal{F}))|_{T^{*}Y \times_{Y} Z}) \text{ in } CH_{s}(Z).$$

Assume moreover that $\dim Z < r + s$. Then the restriction map $\operatorname{CH}_{r+s}(X) \xrightarrow{\simeq} \operatorname{CH}_{r+s}(X \setminus Z)$ is an isomorphism. In this case, we define the relative characteristic class $\operatorname{cc}_{X/Y}(\mathcal{F})$ to be

$$(5.5.4) cc_{X/Y}(\mathcal{F}) := cc_{U/Y}(\mathcal{F}|_U) in CH_{r+s}(X),$$

where $U = X \setminus Z$. Then we have

$$(5.5.5) (-1)^s \cdot df^!(CC(\mathcal{F})) = cc_{X/Y}(\mathcal{F}) + (-1)^s \cdot df^!(CC(\mathcal{F}))|_{T^*Y \times_Y Z},$$

$$(5.5.6) \quad cc_{X/S}(\mathcal{F}) = (-1)^s \cdot dg_X^! df^! (CC(\mathcal{F})) = dg_X^! cc_{X/Y}(\mathcal{F}) + (-1)^s \cdot dg_X^! (df^! (CC(\mathcal{F}))|_{T^*Y \times_Y Z}),$$

By the excess intersection formula, we have

$$(5.5.7) dg_X^! cc_{X/Y}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(\mathcal{F}).$$

Thus if $\dim Z < r + s$, then we have

$$(5.5.8) cc_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(\mathcal{F}) + cc_{X/Y/S}^Z(\mathcal{F}).$$

In particular, if Z is empty, then we have

$$(5.5.9) cc_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(\mathcal{F}).$$

Remark 5.6. Assume that $X \to S$ is smooth of relative dimension r and that $X \setminus Z \to Y$ is smooth of relative dimension n (n < r). Then $\Omega_{X/Y}^{1,\vee}$ is locally free of rank n on $X \setminus Z$ and we have the localized Chern classes $c_{i,Z}^X(\Omega_{X/Y}^{1,\vee})$ for i > n (cf. [2, Section 1]). By [8, Lemma 2.1.4], we have

$$(5.6.1) cc_{X/Y/S}^{Z}(\Lambda) = (-1)^{r} c_{r,Z}^{X}(\Omega_{X/Y}^{1}) \cap [X] in CH_{s}(Z).$$

Theorem 5.7 (Saito's Milnor formula). Assume $S = \operatorname{Spec} k$, $Y = \mathbb{A}^1_k$ and $Z = \{x\}$. Then we have

(5.7.1)
$$cc_{X/Y/S}^{\mathbb{Z}}(\mathcal{F}) = -\operatorname{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, f) \quad \text{in} \quad \mathbb{Z} = \operatorname{CH}_{0}(\{x\}).$$

We expect the following Milnor type formula for non-isolated singular/characteristic points holds.

Conjecture 5.8. Let S be a smooth connected k-scheme of dimension s. Consider the commutative diagram (5.5.1). Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$ such that $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal and that $X \to S$ is $SS(\mathcal{F})$ -transversal. Then we have an equality

(5.8.1)
$$\widetilde{C}_{X/Y/S}^{Z}(\mathcal{F}) = \widetilde{\operatorname{cl}}(cc_{X/Y/S}^{Z}(\mathcal{F})) \quad \text{in} \quad H_{Z}^{0}(X, \mathcal{K}_{X/Y/S}),$$

where $\widetilde{\operatorname{cl}}$ is the composition $CH_s(Z) \xrightarrow{\operatorname{cl}} H_Z^0(X, \mathcal{K}_{X/S}) \xrightarrow{(4.2.3)} H_Z^0(X, \mathcal{K}_{X/Y/S})$.

When S = Speck, $Y = \mathbb{A}^1_k$ and $Z = \{x\}$, then Conjecture 5.8 follows from Saito's Milnor formula (5.7.1) and the cohomological Milnor formula (2.3.4).

Proposition 5.9. Consider a commutative diagram in Sm_k

$$(5.9.1) X' \xrightarrow{i_X} X$$

$$h' \qquad Y' \xrightarrow{i_Y} Y$$

$$S' \xrightarrow{\delta} S,$$

where squares are cartesian diagrams. Let $Z \subseteq X$ be a closed subscheme and $Z' = Z \times_X X'$. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$ such that $X \to S$ is $SS(\mathcal{F})$ -transversal and $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal. Assume that f and g are smooth morphisms and that i_X is properly $SS(\mathcal{F})$ -transversal. Assume S (resp. S') is connected of dimension s (resp. s'). Then we have

(5.9.2)
$$i_X^! cc_{X/Y/S}^Z(\mathcal{F}) = cc_{X'/Y'/S'}^{Z'}(i_X^* \mathcal{F}) \quad \text{in} \quad CH_{s'}(Z'),$$

where $i_X^!: CH_s(Z) \to CH_{s'}(Z')$ is the refined Gysin pull-back.

5.10. Let $g: Y \to S$ be a smooth morphism in Sm_k . Consider a commutative diagram in Sm_k :

$$(5.10.1) X \xrightarrow{p} X'.$$

Let $Z \subseteq X$ be a closed subscheme. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$ such that $X \to S$ is $SS(\mathcal{F})$ -transversal and that $X \setminus Z \to Y$ is $SS(\mathcal{F}|_Z)$ -transversal. Assume p is a proper morphism and put Z' = p(Z). By [7, Lemma 3.8 and Lemma 4.2.6], the morphism $X' \to S$ is $SS(Rp_*\mathcal{F})$ -transversal and that $X' \setminus Z' \to Y$ is $SS(Rp_*\mathcal{F}|_Z)$ -transversal. Then we have well defined classes $cc_{X/Y/S}^Z(\mathcal{F}) \in \mathrm{CH}_s(Z)$ and $cc_{X'/Y/S}^Z(Rp_*\mathcal{F}) \in \mathrm{CH}_s(Z')$.

Proposition 5.11. Consider the assumptions in 5.10. Assume moreover $\dim p_{\circ}SS(\mathcal{F}) \leq \dim X'$, Y is projective and p is quasi-projective. Then we have

(5.11.1)
$$p_* cc_{X/Y/S}^Z(\mathcal{F}) = cc_{X'/Y/S}^{Z'}(Rp_*\mathcal{F}),$$

where $p_*: \mathrm{CH}_s(Z) \to \mathrm{CH}_s(Z')$ is the proper push-forward.

Corollary 5.12 (Saito, [8, Theorem 2.2.3]). Let $f: X \to Y$ be a projective morphism of smooth schemes over a perfect field k, and let $y \in Y$ be a closed point. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$. Assume Y is a smooth and connected curve and that f is properly $SS(\mathcal{F})$ -transversal outside X_y . Then we have

(5.12.1)
$$-a_y(Rf_*\mathcal{F}) = f_*cc_{X/Y/k}^{X_y}(\mathcal{F}).$$

References

- [1] A. Beilinson, Constructible sheaves are holonomic, Sel. Math. New Ser. 22, (2016): 1797–1819.
- [2] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, (1987): 421–450. ↑8
- [3] P. Deligne, La formule de dualité globale, Exposé XVIII, pp.481-587 in SGA4 Tome 3: Théorie des topos et cohomologie étale des schémas, edited by M.Artin et al., Lecture Notes in Math.305, Springer, 1973. ^{↑6}
- [4] P. Deligne, La formule de Milnor, Exposé XVI, pp.197-211 in SGA7 II: Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math. 340, Springer, 1973. †1
- [5] P. Deligne, Notes sur Euler-Poincaré: brouillon project, 8/2/2011. 1
- [6] Q. Lu, W. Zheng, Categorical traces and a relative Lefschetz-Verdier formula, Forum of Mathematics, Sigma, Vol.10 (2022): 1-24. ↑6
- [7] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones mathematicae, 207 (2017): 597-695. ↑1, ↑4, ↑7, ↑9
- [8] T. Saito, Characteristic cycles and the conductor of direct image, J. Amer. Math. Soc. 34 (2021): 369-410. ^{↑2},
 ↑8, ↑9
- [9] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε-factor of an étale sheaf, Trans. Amer. Math. Soc. 373 (2020): 6887-6927. [↑]4
- [10] J. Xiong and E. Yang, Milnor formula for non-isolated singularities, preprint, 2023. ¹²
- [11] E. Yang and Y. Zhao, On the relative twist formula of ℓ-adic sheaves, Acta. Math. Sin.-English Ser. 37 (2021): 73–94. ↑6
- [12] E. Yang and Y. Zhao, Cohomological Milnor formula and Saito's conjecture on characteristic classes, 2022, arXiv:2209.11086. ↑2, ↑3, ↑4, ↑5, ↑6, ↑7