LECTURE ON NON-ACYCLICITY CLASSES

ENLIN YANG

Abstract. In this lecture, we introduce two classes supported on the non-acyclicity locus of a separated morphism relatively to a constructible sheaf. One is defined in a cohomological way by using localized categorical trace, another is constructed via geometric method by using Saito's characteristic cycle. As applications of these two classes,

- (1) We prove cohomological analogs of the Milnor formula and the conductor formula for constructible sheaves on (not necessarily smooth) varieties.
- (2) We propose a (relative version of) Milnor type formula for non-isolated singularities.

This talk is based on joint work with Jiangnan Xiong and Yigeng Zhao.

CONTENTS

1. INTRODUCTION

1.1. Let k be a perfect field of characteristic $p > 0$ and $S = \text{Spec}k$. Let Λ be a finite field of characteristic $\ell \neq p$. Let X be a smooth scheme over S and $f : X \to Y$ a flat morphism of finite type to a smooth curve Y over S. If f has an isolated singularity at a closed point $x_0 \in |X|$, there is an invariant $\mu(X/Y, x_0)$ supported on x_0 , called the Milnor number. The Milnor formula [\[4,](#page-9-1) Théorème 2.4] proved by Deligne says that the Milnor number is related to the total dimension at x_0 of the vanishing cycles $R\Phi(f,\Lambda)$ of f for the constant sheaf Λ , i.e.,

(1.1.1)
$$
(-1)^n \mu(X/Y, x_0) = -\text{dimtot} R\Phi_{\overline{x}_0}(f, \Lambda),
$$

where $n = \dim X$ and dimtot $= \dim + Sw$ denotes the total dimension. Later in [\[5\]](#page-9-2), Deligne proposed a Milnor formula for any constructible sheaf $\mathcal F$ of Λ -modules on X, which is realized and proved by Saito in [\[7\]](#page-9-3). If $x_0 \in |X|$ is at most an isolated characteristic point of f with respect to the singular support of $\mathcal F$, then Saito's theorem [\[7,](#page-9-3) Theorem 5.9] says

(1.1.2)
$$
(CC(\mathcal{F}), df)_{T^*X, x_0} = -\text{dimtot} R\Phi_{\overline{x}_0}(f, \mathcal{F}),
$$

where $CC(\mathcal{F})$ is the characteristic cycle of F. Now we propose the following question:

Question 1.2. Is there a Milnor type formula for non-isolated singular/characteristic points?

September 2, 2024.

2 ENLIN YANG

1.3. If f is a projective flat morphism and if f is smooth outside $f^{-1}(y)$ for a closed point y of the curve Y, then the conductor formula of Bloch (cf. $[8,$ Theorem 2.2.3 and Corollary 2.2.4])

(1.3.1)
$$
-a_y(Rf_*\Lambda) = (-1)^n(X,X)_{T^*X,X_y} = (-1)^n \text{deg} c_{n,X_y}^X(\Omega^1_{X/Y}) \cap [X]
$$

gives a partial answer to the Question [1.1.2.](#page-0-1) We view $(1.1.1)$, $(1.1.2)$ and $(1.3.1)$ in the form

 $(1.3.2)$ deg(Geometric class on singular locus) = deg(Cohomology class on singular locus).

In a joint work with Yigeng Zhao [\[12\]](#page-9-5), we introduce a (cohomological) non-acyclicity class which is supported on non-acyclicity locus. Let $X \to S$ be a separated morphism between schemes of finite type over k. Let $Z \subseteq X$ be a closed subscheme and $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ such that $X \setminus Z \to S$ is universally locally acyclic relatively to $\mathcal{F}|_{X\setminus Z}$. Then the cohomological non-acyclicity class $\widetilde{C}_{X/Y/k}^Z(\mathcal{F})$ is a class supported on Z (in $H_Z^0(X, \mathcal{K}_{X/Y/k})$). In a joint work with Jiangnan Xiong [\[10\]](#page-9-6), we construct its geometric counterpart. More precisely, when f is a morphism between smooth schemes over k such that $X \to S$ is $SS(\mathcal{F})$ -transversal outside Z, then we construct a class $cc^Z_{X/Y/k}(\mathcal{F}) \in CH_0(Z)$ (cf. $(5.5.8)$, called the geometric non-acyclicity class of F. If moreover dim $Z \nless$ dim Y, then we have the following fibration formula [\(5.5.8\)](#page-7-0)

(1.3.3)
$$
cc_{X/k}(\mathcal{F}) = c_{\dim Y}(f^*\Omega_{Y/k}^{1,\vee}) \cap cc_{X/k}(\mathcal{F}) + cc_{X/Y/k}^Z(\mathcal{F}).
$$

We prove that the formation of the geometric non-acyclicity class is compatible with pullback $(5.9.2)$ and proper push-forward [\(5.11.1\)](#page-8-1). It also satisfies Saito's Milnor formula [\(5.7.1\)](#page-7-1) and a conductor formula [\(5.12.1\)](#page-8-2). It is natural to expect the following conjecture holds:

Conjecture 1.4 (Conjecture [5.8\)](#page-8-3). We have

(1.4.1)
$$
\widetilde{C}_{X/Y/k}^Z(\mathcal{F}) = \widetilde{\text{cl}}(cc_{X/Y/k}^Z(\mathcal{F})) \text{ in } \text{CH}_0(Z),
$$

where $\tilde{cl}: CH_0(Z) \to H^0_Z(X, \mathcal{K}_{X/Y/k})$ is the cycle class map.

We hope $(1.4.1)$ gives a answer to Question [1.2](#page-0-3) in some sense.

Notation and Conventions.

(2.1.1)

- (1) Let S be a Noetherian scheme and Sch_S the category of separated schemes of finite type over S. Let Λ be a Noetherian ring such that $m\Lambda = 0$ for some integer m invertible on S unless otherwise stated explicitly.
- (2) For any scheme $X \in Sch_S$, we denote by $D_{\text{ctf}}(X,\Lambda)$ the derived category of complexes of Λ-modules of finite tor-dimension with constructible cohomology groups on X.
- (3) For any separated morphism $f : X \to Y$ in Sch_S, we use the following notation

$$
\mathcal{K}_{X/Y} = Rf^!\Lambda, \quad D_{X/Y}(-) = R\mathcal{H}om(-, \mathcal{K}_{X/Y}).
$$

(4) To simplify our notation, we omit to write R or L to denote the derived functors unless otherwise stated explicitly or for RHom.

2. Cohomological non-acyclicity class

2.1. Consider a commutative diagram in Sch_{S} :

MILNOR FORMULA

where $\tau: Z \to X$ is a closed immersion and g is a smooth morphism. Let us denote the diagram $(2.1.1)$ simply by $\Delta = \Delta_{X/Y/S}^Z$ Let $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ such that $X \setminus Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X\setminus Z}$ and that $h:X\to S$ is universally locally acyclic relatively to \mathcal{F} .

2.2. In [12], we introduce an object $\mathcal{K}_{\Delta} = \mathcal{K}_{X/Y/S}$ sitting in a distinguished triangle (cf. [12, $(4.2.5)$

$$
(2.2.1) \t\t\t\t\mathcal{K}_{X/Y} \to \mathcal{K}_{X/S} \to \mathcal{K}_{\Delta} \xrightarrow{+1}.
$$

and a cohomological class $C^Z_{\Delta}(\mathcal{F}) = \tilde{C}^Z_{X/Y/S}(\mathcal{F})$ in $H_Z^0(X, \mathcal{K}_{\Delta})$. We call $C^Z_{\Delta}(\mathcal{F})$ the non-acyclicity class of F . If the following condition holds:

(2.2.2)
$$
H^{0}(Z, \mathcal{K}_{Z/Y}) = 0 \text{ and } H^{1}(Z, \mathcal{K}_{Z/Y}) = 0
$$

then the map $H_Z^0(X,\mathcal{K}_{X/S}) \xrightarrow{(2.2.1)} H_Z^0(X,\mathcal{K}_{X/Y/S})$ is an isomorphism. In this case, the class $\widetilde{C}_{X/Y/S}^Z(\mathcal{F}) \in H_Z^0(X, \mathcal{K}_{X/Y/S})$ defines an element of $H_Z^0(X, \mathcal{K}_{X/S})$. Now we summarize the functorial properties for the non-acyclicity classes (cf. $[12,$ Theorem 1.9, Proposition 1.11, Theorem 1.12, Theorem 1.14 .

Proposition 2.3. Let us denote the diagram (4.2.1) simply by $\Delta = \Delta_{X/Y/S}^Z$ and $\widetilde{C}_{X/Y/S}^Z(\mathcal{F})$ by $C_{\Delta}(\mathcal{F})$. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$. Assume that $Y \to S$ is smooth, $X \setminus Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X\setminus Z}$ and that $X\to S$ is universally locally acyclic relatively to \mathcal{F} .

(1) (Fibration formula) If $H^0(Z, \mathcal{K}_{Z/Y}) = H^1(Z, \mathcal{K}_{Z/Y}) = 0$, then we have

(2.3.1)
$$
C_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap C_{X/Y}(\mathcal{F}) + C_{\Delta}(\mathcal{F}) \quad \text{in} \quad H^0(X,\mathcal{K}_{X/S}).
$$

(2) (Pull-back) Let b: $S' \to S$ be a morphism of Noetherian schemes. Let $\Delta' = \Delta_{X'/Y'/S'}^{Z'}$ be the base change of $\Delta = \Delta_{X/Y/S}^Z$ by $b: S' \to S$. Let $b_X: X' = X \times_S S' \to X$ be the base change of b by $X \to S$. Then we have

(2.3.2)
$$
b_X^* C_{\Delta}(\mathcal{F}) = C_{\Delta'}(b_X^* \mathcal{F}) \text{ in } H^0_{Z'}(X', \mathcal{K}_{X'/Y'/S'})
$$

where $b_X^*: H_Z^0(X, \mathcal{K}_{X/Y/S}) \to H_{Z'}^0(X', \mathcal{K}_{X'/Y'/S'})$ is the induced pull-back morphism.

(3) (Proper push-forward) Consider a diagram $\Delta' = \Delta_{X'/Y/S}^{Z'}$. Let $s: X \to X'$ be a proper morphism over Y such that $Z \subseteq s^{-1}(Z')$. Then we have

(2.3.3)
$$
s_*(C_\Delta(\mathcal{F})) = C_{\Delta'}(Rs_*\mathcal{F}) \quad \text{in} \quad H^0_{Z'}(X', \mathcal{K}_{X'/Y/S})
$$

where $s_*: H^0_Z(X, \mathcal{K}_{X/Y/S}) \to H^0_{Z'}(X', \mathcal{K}_{X'/Y/S})$ is the induced push-forward morphism.

(4) (Cohomological Milnor formula) Assume $S =$ Speck for a perfect field k of characteristic $p > 0$ and Λ is a finite local ring such that the characteristic of the residue field is invertible in k. If Y is a smooth connected curve over k and $Z = \{x\}$, then we have

(2.3.4)
$$
C_{\Delta}(\mathcal{F}) = -\text{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, f) \text{ in } \Lambda = H_x^0(X, \mathcal{K}_{X/k}).
$$

where $R\Phi(\mathcal{F},f)$ is the complex of vanishing cycles and dimtot = dim + Sw is the total dimension.

(5) (Cohomological conductor formula) Assume $S =$ Speck for a perfect field k of characteristic $p > 0$ and Λ is a finite local ring such that the characteristic of the residue field is invertible in k. If Y is a smooth connected curve over k and $Z = f^{-1}(y)$ for a closed point $y \in |Y|$, then we have

(2.3.5)
$$
f_* C_{\Delta}(\mathcal{F}) = -a_y(Rf_*\mathcal{F}) \quad \text{in} \quad \Lambda = H_y^0(Y, \mathcal{K}_{Y/k}),
$$

4 ENLIN YANG

where $a_y(\mathcal{G}) = \text{rank}\mathcal{G}_{\bar{\eta}} - \text{rank}\mathcal{G}_{\bar{y}} + \text{Sw}_y\mathcal{G}$ is the Artin conductor of the object $\mathcal{G} \in D_{\text{ctf}}(Y,\Lambda)$ at y and η is the generic point of Y.

The formation of non-acyclicity classes is also compatible with specialization maps (cf. [\[12,](#page-9-5) Proposition 4.17]). We call [\(2.3.1\)](#page-2-1) the fibration formula for characteristic class, which is motivated from $[9]$.

2.4. Let X be a smooth connected curve over k. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$ and $Z \subseteq X$ be a finite set of closed points such that the cohomology sheaves of $\mathcal{F}|_{X\setminus Z}$ are locally constant. By the cohomological Milnor formula $(2.3.4)$, we have the following (motivic) expression for the Artin conductor of $\mathcal F$ at $x \in Z$

(2.4.1)
$$
a_x(\mathcal{F}) = \text{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, \text{id}) = -C_{U/U/k}^{\{x\}}(\mathcal{F}|_U),
$$

where U is any open subscheme of X such that $U \cap Z = \{x\}$. By [\(2.3.1\)](#page-2-1), we get the following cohomological Grothendieck-Ogg-Shafarevich formula (cf. [\[12,](#page-9-5) Corollary 6.6]):

(2.4.2)
$$
C_{X/k}(\mathcal{F}) = \text{rank}\mathcal{F} \cdot c_1(\Omega_{X/k}^{1,\vee}) - \sum_{x \in Z} a_x(\mathcal{F}) \cdot [x] \quad \text{in} \quad H^0(X, \mathcal{K}_{X/k}).
$$

3. Transversality condition

3.1. We recall the transversality condition introduced in [\[12,](#page-9-5) 2.1], which is a relative version of the transversality condition studied by Saito [\[7,](#page-9-3) Definition 8.5]. Consider the following cartesian diagram in Sch_{S} :

(3.1.1)
$$
X \xrightarrow{i} Y
$$

$$
p \downarrow \Box \downarrow f
$$

$$
W \xrightarrow{\delta} T.
$$

Let $\mathcal{F} \in D_{\text{ctf}}(Y,\Lambda)$ and $\mathcal{G} \in D_{\text{ctf}}(T,\Lambda)$. Let $c_{\delta,f,\mathcal{F},\mathcal{G}}$ be the composition

(3.1.2)

$$
c_{\delta,f,\mathcal{F},\mathcal{G}}: i^*\mathcal{F} \otimes^L p^*\delta^!\mathcal{G} \xrightarrow{\text{id} \otimes b.c.} i^*\mathcal{F} \otimes^L i^! f^*\mathcal{G}
$$

$$
\xrightarrow{\text{adj}} i^!i_!(i^*\mathcal{F} \otimes^L i^! f^*\mathcal{G})
$$

$$
\xrightarrow{\text{proj-formula}} i^! (\mathcal{F} \otimes^L i_!i^! f^*\mathcal{G}) \xrightarrow{\text{adj}} i^! (\mathcal{F} \otimes^L f^*\mathcal{G}).
$$

We put $c_{\delta,f,\mathcal{F}} := c_{\delta,f,\mathcal{F},\Lambda} : i^* \mathcal{F} \otimes^L p^* \delta^! \Lambda \to i^! \mathcal{F}$. If $c_{\delta,f,\mathcal{F}}$ is an isomorphism, then we say that the morphism δ is F-transversal.

By [\[12,](#page-9-5) 2.11], there is a functor $\delta^{\Delta}: D_{\text{ctf}}(Y,\Lambda) \to D_{\text{ctf}}(X,\Lambda)$ such that for any $\mathcal{F} \in D_{\text{ctf}}(Y,\Lambda)$, we have a distinguished triangle

(3.1.3)
$$
i^* \mathcal{F} \otimes^L p^* \delta^! \Lambda \xrightarrow{c_{\delta,f,\mathcal{F}}} i^! \mathcal{F} \to \delta^{\Delta} \mathcal{F} \xrightarrow{+1}.
$$

δ is F-transversal if and only if $\delta^{\Delta}(\mathcal{F})=0$ (cf. [\[12,](#page-9-5) Lemma 2.12]).

The following lemma gives an equivalence between transversality condition and (universally) locally acyclicity condition.

Lemma 3.2. Let $f : X \to S$ be a morphism of finite type between Noetherian schemes and $\mathcal{F} \in$ $D_{\text{ctf}}(X,\Lambda)$. The following conditions are equivalent:

- (1) The morphism f is locally acyclic relatively to \mathcal{F} .
- (2) The morphism f is universally locally acyclic relatively to $\mathcal{F}.$

(3) For any $\mathcal{G} \in D_{\mathrm{ctf}}(X,\Lambda)$, the canonical map

(3.2.1)
$$
D_{X/S}(\mathcal{G}) \boxtimes^{L} \mathcal{F} \to R\mathcal{H}om(\text{pr}_1^*\mathcal{G}, \text{pr}_2^!\mathcal{F})
$$

is an isomorphism.

(4) The canonical map

(3.2.2)
$$
D_{X/S}(\mathcal{F}) \boxtimes^{L} \mathcal{F} \to R\mathcal{H}om(\text{pr}_{1}^{*}\mathcal{F},\text{pr}_{2}^{!}\mathcal{F})
$$

is an isomorphism.

(5) For any cartesian diagram between Noetherian schemes

(3.2.3)
$$
Y \times_S X \xrightarrow{\text{pr}_2} X
$$

$$
\downarrow \text{pr}_1 \downarrow \qquad \qquad \square \qquad \downarrow f
$$

$$
Y \xrightarrow{\delta} S
$$

the morphism δ is $\mathcal{F}\text{-}transversal$.

- (6) For any cartesian diagram [\(3.2.3\)](#page-4-1) and any $G \in D_{\text{ctf}}(S,\Lambda)$, the morphism $c_{\delta,f,\mathcal{F},\mathcal{G}}$ is an isomorphism.
- (7) For any cartesian diagram between Noetherian schemes

(3.2.4)
$$
Y \times_S X \xrightarrow{\text{pr}_2} X' \longrightarrow X
$$

$$
\downarrow \qquad \qquad \Box \qquad \downarrow f' \qquad \Box \qquad \downarrow f
$$

$$
Y \xrightarrow{\delta} S' \longrightarrow S,
$$

the morphism δ is $\mathcal{F}|_{X'}$ -transversal.

(8) For any cartesian diagram [\(3.2.4\)](#page-4-2) and any $G \in D_{\text{ctf}}(S,\Lambda)$, the morphism $c_{\delta,f,\mathcal{F},\mathcal{G}}$ is an isomorphism.

When S is a scheme of finite type over a field k, then the equivalence between (2) and (7) follows from [\[12,](#page-9-5) Proposition 2.4.(2) and Proposition 2.5. In this case, we may require Y and S' smooth over k in (7) .

4. Non-acyclicity classes

4.1. Let S be a Noetherian scheme and Sch_S the category of separated schemes of finite type over S. Let Λ be a Noetherian ring such that $m\Lambda = 0$ for some integer m invertible on S. Consider the following cartesian diagram in Sch_S

(4.1.1)
$$
X \times_S Y \xrightarrow{\text{pr}_1} X
$$

$$
\downarrow^{\text{pr}_2} \downarrow \qquad \qquad \downarrow^{\text{pr}_3} \downarrow^{\text{hr}_4}
$$

$$
Y \xrightarrow{g} S,
$$

where pr_1 and pr_2 are the projections. For any $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ and $\mathcal{G} \in D_{\text{ctf}}(Y,\Lambda)$, we have canonical morphisms

- (4.1.2) $\mathcal{F} \boxtimes_S^L \mathcal{K}_{Y/S} = \text{pr}_1^* \mathcal{F} \otimes^L \text{pr}_2^* g^! \Lambda \xrightarrow{c_{g,h,\mathcal{F}}} \text{pr}_1^! \mathcal{F},$
- (4.1.3) $\mathcal{F} \boxtimes_S^L D_{Y/S}(\mathcal{G}) \to R\mathcal{H}om(\text{pr}_2^*\mathcal{G}, \text{pr}_1^!\mathcal{F}),$

where $(4.1.3)$ is adjoint to

(4.1.4)
$$
\mathcal{F} \boxtimes_S^L (D_{Y/S}(\mathcal{G}) \otimes^L \mathcal{G}) \xrightarrow{id \boxtimes \text{ev}} \mathcal{F} \boxtimes_S^L \mathcal{K}_{Y/S} \xrightarrow{(4.1.2)} \text{pr}_1^! \mathcal{F}.
$$

Note that (4.1.2) is a special case of (4.1.3) by taking $\mathcal{G} = \Lambda$. If moreover $X \to S$ is universally locally acyclic relatively to F, then $(4.1.3)$ is an isomorphism by [6, Proposition 2.5] (see also [11, Corollary 3.1.5]). For a morphism $c = (c_1, c_2) : C \to X \times_S Y$, we have a canonical isomorphism by $[3, Corollaire 3.1.12.2]$

(4.1.5)
$$
R\mathcal{H}om(c_2^*\mathcal{G},c_1^!\mathcal{F}) \xrightarrow{\simeq} c^!R\mathcal{H}om(\text{pr}_2^*\mathcal{G},\text{pr}_1^!\mathcal{F}).
$$

4.2. Consider a commutative diagram in Sch_S :

$$
Z \xrightarrow{f} X \xrightarrow{f} Y,
$$
\n
$$
\xrightarrow{h} \xrightarrow{g} g
$$
\n
$$
\xrightarrow{g} \xrightarrow{g} \xrightarrow{g} Y,
$$

where $\tau: Z \to X$ is a closed immersion and g is a smooth morphism. Let $i: X \times_Y X \to X \times_S X$ be the base change of the diagonal morphism $\delta: Y \to Y \times_S Y$:

(4.2.2)

$$
f\begin{pmatrix} X \\ \delta_1 \\ X \times_Y X & \xrightarrow{i} X \times_S X \\ p \\ Y & \xrightarrow{j} X \times_S Y, \end{pmatrix}
$$

$$
Y \xrightarrow{\delta} Y \times_S Y,
$$

where δ_0 and δ_1 are the diagonal morphisms. Put $\mathcal{K}_{X/Y/S} := \delta^{\Delta} \mathcal{K}_{X/S} \simeq \delta_1^* \delta^{\Delta} \delta_{0*} \mathcal{K}_{X/S}$. We have the following distinguished triangle (cf. $[12, (4.2.5)]$)

$$
(\text{4.2.3}) \qquad \qquad \mathcal{K}_{X/Y} \to \mathcal{K}_{X/S} \to \mathcal{K}_{X/Y/S} \xrightarrow{+1}
$$

Let $\mathcal{F} \in D_{\rm ctf}(X,\Lambda)$ such that $X\backslash Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X\backslash Z}$ and that $h: X \to S$ is universally locally acyclic relatively to F. We put

(4.2.4)
$$
\mathcal{H}_S = R\mathcal{H}om_{X \times_S X}(\text{pr}_2^* \mathcal{F}, \text{pr}_1^! \mathcal{F}), \qquad \mathcal{T}_S = \mathcal{F} \boxtimes_S^L D_{X/S}(\mathcal{F}).
$$

Lemma 4.3. $\delta_1^* \delta^{\Delta} \mathcal{T}_S$ is supported on Z.

The relative cohomological characteristic class $C_{X/S}(\mathcal{F})$ is the composition (cf. [12, 3.1])

(4.3.1)
$$
\Lambda \xrightarrow{\text{id}} R\mathcal{H}om(\mathcal{F}, \mathcal{F}) \xrightarrow{\text{(4.1.5)}} \delta_0^!\mathcal{H}_S \xleftarrow{\text{(4.1.3)}} \delta_0^!\mathcal{T}_S \to \delta_0^*\mathcal{T}_S \xrightarrow{\text{ev}} \mathcal{K}_{X/S}
$$

The non-acyclicity class $\widetilde{C}_{X/Y/S}^Z(\mathcal{F})$ is the composition (cf. [12, Definition 4.6])

$$
(4.3.2) \qquad \Lambda \to \delta_0^! \mathcal{H}_S \stackrel{\simeq}{\leftarrow} \delta_0^! \mathcal{T}_S \simeq \delta_1^! i^! \mathcal{T}_S \to \delta_1^* i^! \mathcal{T}_S \to \delta_1^* \delta^{\Delta} \mathcal{T}_S \stackrel{\simeq}{\leftarrow} \tau_* \tau^! \delta_1^* \delta^{\Delta} \mathcal{T}_S \to \tau_* \tau^! \mathcal{K}_{X/Y/S}.
$$

5. GEOMETRIC NON-ACYCLICITY CLASS

Now we construct a geometric counterpart of the cohomological non-acyclicity class. Let k be a perfect field of characteristic p and Λ be a finite local ring whose residue field is of characteristic $\ell \neq p$. We first recall geometric transversal condition.

MILNOR FORMULA 7

5.1. Let X be a smooth scheme of dimension d over k and $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$. We need Beilinson's singular support $SS(\mathcal{F})$, which a d-dimensional conical closed subset of the cotangent bundle T^*X). We also need Saito's characteristic cycle $CC(\mathcal{F})$, which is a d-cycle supported on $SS(\mathcal{F})$ with integral coefficients. The characteristic cycle $CC(\mathcal{F})$ is characterized by a Milnor formula for isolated characteristic points.

We say a morphism $f: X \to S$ to a smooth scheme S is $SS(\mathcal{F})$ -transversal if $df^{-1}(SS(\mathcal{F}))$ is contained in the zero section of $T^*S \times_S X$, where $df : T^*S \times_S X \to T^*X$ is induced morphism on vector bundles. We have the following fact:

Lemma 5.2. If $f : X \to S$ is $SS(\mathcal{F})$ -transversal, then f is universally locally acyclic relatively to ${\mathcal F}.$

5.3. Let S be a smooth connected scheme of dimension s over k. Let $f: X \to S$ be a morphism in Sm_k. Let $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ such that f is $SS(\mathcal{F})$ -transversal. Consider the following morphisms

(5.3.1)
$$
X \xrightarrow{0} T^*S \times_S X \xrightarrow{df} T^*X,
$$

where 0 stands for the zero section. By assumption $df^{-1}(SS(\mathcal{F}))$ is contained in $0(X)$. We define the relative characteristic class of $\mathcal F$ to be the following s-cycle class on X:

(5.3.2)
$$
cc_{X/S}(\mathcal{F}) := (-1)^s \cdot (df)^!(CC(\mathcal{F})) \text{ in } CH_s(X),
$$

where $(df)^!$ is the refined Gysin pullback. We don't know how to define $cc_{X/S}(\mathcal{F})$ if one only assume f is universally locally acyclic relatively to \mathcal{F} .

If f is a smooth morphism of relative dimension r and if $\mathcal F$ is locally constant, then we have

(5.3.3)
$$
cc_{X/S}(\mathcal{F}) = (-1)^s \cdot 0^!_{X/S}((-1)^{\dim X} \cdot \text{rank}\mathcal{F} \cdot [X]) = \text{rank}\mathcal{F} \cdot c_r(\Omega^{1,\vee}_{X/S}) \cap [X].
$$

We propose the following conjecture:

Conjecture 5.4. Let S be a smooth connected scheme of dimension s over k. Let $f: X \to S$ be a morphism in Sm_k . Let $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ such that f is $SS(\mathcal{F})$ -transversal. Then we have

(5.4.1)
$$
\operatorname{cl}(cc_{X/S}(\mathcal{F})) = C_{X/S}(\mathcal{F}) \quad \text{in} \quad H^0(X, \mathcal{K}_{X/S}),
$$

where $cl: CH_s(X) \to H^0(X, \mathcal{K}_{X/S})$ is the cycle class map.

When $S = \text{Spec}k$, then it is Saito's conjecture [\[7,](#page-9-3) Conjecture 6.8.1], which is proved under quasi-projective assumption in [\[12,](#page-9-5) Theorem 1.3]. When $f: X \to S$ is a smooth morphism, then [\(5.4.1\)](#page-6-0) is true for a locally constant constructible (flat) sheaf $\mathcal F$ of Λ -modules. Indeed, this follows from $(5.3.3), [12, Lemma 3.3]$ $(5.3.3), [12, Lemma 3.3]$ $(5.3.3), [12, Lemma 3.3]$ $(5.3.3), [12, Lemma 3.3]$ and $(2.3.1).$ $(2.3.1).$

5.5. Consider a commutative diagram in Sm_k :

where $\tau : Z \to X$ is a closed immersion and q is a smooth morphism of relative dimension r. Let $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ such that $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal and that $X \to S$ is $SS(\mathcal{F})$ -transversal. We have a commutative diagram on vector bundles

$$
X \xrightarrow{\n \begin{array}{c}\n X \xrightarrow{\text{if } X \text{ is a } X} \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
T^*S \times_S X \xrightarrow{dg} T^*Y \times_Y X \xrightarrow{df} T^*X \\
\downarrow & \downarrow \\
Y \xrightarrow{0} T^*(Y/S),\n \end{array}}
$$

where dg_X is the base change of dg. By assumption, $df^{-1}(SS(\mathcal{F}))$ is supported on $0(X) \cup T^*Y \times_Y Z$ and $dh^{-1}(SS(\mathcal{F})) = dg_X^{-1}df^{-1}(SS(\mathcal{F}))$ is contained in the zero section $0(X) \subseteq T^*S \times_S X$. We define the geometric non-acyclicity class $cc^Z_{X/Y/S}(\mathcal{F})$ of $\mathcal F$ to be

(5.5.3)
$$
cc^Z_{X/Y/S}(\mathcal{F}) := (-1)^s \cdot dg^!_X(df^!(CC(\mathcal{F}))|_{T^*Y \times_Y Z}) \text{ in } CH_s(Z).
$$

Assume moreover that $\dim Z \leq r + s$. Then the restriction map $\text{CH}_{r+s}(X) \xrightarrow{\simeq} \text{CH}_{r+s}(X\setminus Z)$ is an isomorphism. In this case, we define the relative characteristic class $cc_{X/Y}(\mathcal{F})$ to be

(5.5.4)
$$
cc_{X/Y}(\mathcal{F}) := cc_{U/Y}(\mathcal{F}|_U) \text{ in } CH_{r+s}(X),
$$

where $U = X \setminus Z$. Then we have

$$
(5.5.5) \quad (-1)^s \cdot df^!(CC(\mathcal{F})) = cc_{X/Y}(\mathcal{F}) + (-1)^s \cdot df^!(CC(\mathcal{F}))|_{T^*Y \times_Y Z},
$$

$$
(5.5.6) \quad cc_{X/S}(\mathcal{F}) = (-1)^s \cdot dg_X^! df^!(CC(\mathcal{F})) = dg_X^! cc_{X/Y}(\mathcal{F}) + (-1)^s \cdot dg_X^! (df^!(CC(\mathcal{F}))|_{T^*Y \times_Y Z}),
$$

By the excess intersection formula, we have

(5.5.7)
$$
dg_X^! cc_{X/Y}(\mathcal{F}) = c_r(f^* \Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(\mathcal{F}).
$$

Thus if $\dim Z < r + s$, then we have

(5.5.8)
$$
cc_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(\mathcal{F}) + cc_{X/Y/S}^Z(\mathcal{F}).
$$

In particular, if Z is empty, then we have

(5.5.9)
$$
cc_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(\mathcal{F}).
$$

Remark 5.6. Assume that $X \to S$ is smooth of relative dimension r and that $X \setminus Z \to Y$ is smooth of relative dimension $n (n < r)$. Then $\Omega^{1,\vee}_{X/Y}$ is locally free of rank n on $X\setminus Z$ and we have the localized Chern classes $c_{i,Z}^X(\Omega_{X/\mathfrak{Z}}^{1,\vee})$ $X_{X/Y}^{1,\vee}$ for $i > n$ (cf. [\[2,](#page-9-11) Section 1]). By [\[8,](#page-9-4) Lemma 2.1.4], we have

(5.6.1)
$$
cc_{X/Y/S}^Z(\Lambda) = (-1)^r c_{r,Z}^X(\Omega^1_{X/Y}) \cap [X] \text{ in } CH_s(Z).
$$

Theorem 5.7 (Saito's Milnor formula). Assume $S = \text{Spec}k$, $Y = \mathbb{A}^1_k$ and $Z = \{x\}$. Then we have

(5.7.1)
$$
cc_{X/Y/S}^Z(\mathcal{F}) = -\text{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, f) \text{ in } \mathbb{Z} = \text{CH}_0(\{x\}).
$$

We expect the following Milnor type formula for non-isolated singular/characteristic points holds.

Conjecture 5.8. Let S be a smooth connected k -scheme of dimension s . Consider the commutative diagram [\(5.5.1\)](#page-6-2). Let $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ such that $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal and that $X \to S$ is $SS(\mathcal{F})$ -transversal. Then we have an equality

(5.8.1)
$$
\widetilde{C}_{X/Y/S}^Z(\mathcal{F}) = \widetilde{\text{cl}}(cc_{X/Y/S}^Z(\mathcal{F})) \quad \text{in} \quad H_Z^0(X, \mathcal{K}_{X/Y/S}),
$$

where \widetilde{cl} is the composition $CH_s(Z) \xrightarrow{cl} H_Z^0(X, \mathcal{K}_{X/S}) \xrightarrow{(4.2.3)} H_Z^0(X, \mathcal{K}_{X/Y/S}).$ $CH_s(Z) \xrightarrow{cl} H_Z^0(X, \mathcal{K}_{X/S}) \xrightarrow{(4.2.3)} H_Z^0(X, \mathcal{K}_{X/Y/S}).$ $CH_s(Z) \xrightarrow{cl} H_Z^0(X, \mathcal{K}_{X/S}) \xrightarrow{(4.2.3)} H_Z^0(X, \mathcal{K}_{X/Y/S}).$

When $S = \text{Spec} k$, $Y = \mathbb{A}^1_k$ and $Z = \{x\}$, then Conjecture [5.8](#page-8-3) follows from Saito's Milnor formula $(5.7.1)$ and the cohomological Milnor formula $(2.3.4)$.

Proposition 5.9. Consider a commutative diagram in Sm_k

(5.9.1)

$$
K' \xrightarrow{ix} X
$$

$$
K' \xrightarrow{f'} h
$$

$$
Y' \xrightarrow{ix} Y
$$

$$
S' \xrightarrow{\qquad \qquad g' \qquad \qquad } S,
$$

where squares are cartesian diagrams. Let $Z \subseteq X$ be a closed subscheme and $Z' = Z \times_X X'$. Let $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ such that $X \to S$ is $SS(\mathcal{F})$ -transversal and $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal. Assume that f and g are smooth morphisms and that i_X is properly $SS(\mathcal{F})$ -transversal. Assume S (resp. S') is connected of dimension s (resp. s'). Then we have

(5.9.2)
$$
i_X^! c_{X/Y/S}^Z(\mathcal{F}) = c c_{X'/Y'/S'}^Z(i_X^* \mathcal{F}) \text{ in } CH_{s'}(Z'),
$$

where $i_X^! : CH_s(Z) \to CH_{s'}(Z')$ is the refined Gysin pull-back.

5.10. Let $g: Y \to S$ be a smooth morphism in Sm_k. Consider a commutative diagram in Sm_k:

$$
(5.10.1)
$$

Let $Z \subseteq X$ be a closed subscheme. Let $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$ such that $X \to S$ is $SS(\mathcal{F})$ -transversal and that $X \backslash Z \to Y$ is $SS(\mathcal{F}|_Z)$ -transversal. Assume p is a proper morphism and put $Z' = p(Z)$. By [\[7,](#page-9-3) Lemma 3.8 and Lemma 4.2.6], the morphism $X' \to S$ is $SS(Rp_*\mathcal{F})$ -transversal and that $X'\backslash Z' \to Y$ is $SS(Rp_*\mathcal{F}|_Z)$ -transversal. Then we have well defined classes $cc^Z_{X/Y/S}(\mathcal{F}) \in \text{CH}_s(Z)$ and $cc^{Z'}_{X'/Y/S}(Rp_*\mathcal{F}) \in \text{CH}_s(Z').$

Proposition 5.11. Consider the assumptions in [5.10.](#page-8-4) Assume moreover $\dim p_{\circ} SS(\mathcal{F}) \leq \dim X'$, Y is projective and p is quasi-projective. Then we have

(5.11.1)
$$
p_* c c_{X/Y/S}^Z(\mathcal{F}) = c c_{X'/Y/S}^{Z'}(Rp_*\mathcal{F}),
$$

where $p_* : \text{CH}_s(Z) \to \text{CH}_s(Z')$ is the proper push-forward.

Corollary 5.12 (Saito, [\[8,](#page-9-4) Theorem 2.2.3]). Let $f : X \to Y$ be a projective morphism of smooth schemes over a perfect field k, and let $y \in Y$ be a closed point. Let $\mathcal{F} \in D_{\text{ctf}}(X,\Lambda)$. Assume Y is a smooth and connected curve and that f is properly $SS(\mathcal{F})$ -transversal outside X_y . Then we have

(5.12.1)
$$
-a_y(Rf_*\mathcal{F}) = f_*c c_{X/Y/k}^{X_y}(\mathcal{F}).
$$

10 ENLIN YANG

REFERENCES

- [1] A. Beilinson, Constructible sheaves are holonomic, Sel. Math. New Ser. 22, (2016): 1797–1819.
- [2] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, (1987): 421–450. \uparrow 8
- [3] P. Deligne, La formule de dualité globale, Exposé XVIII, pp.481-587 in SGA4 Tome 3: Théorie des topos et $cohomologie$ étale des schémas, edited by M.Artin et al., Lecture Notes in Math.305, Springer, 1973. \uparrow 6
- [4] P. Deligne, La formule de Milnor, Exposé XVI, pp.197-211 in SGA7 II: Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math. 340, Springer, 1973. ^{†1}
- [5] P. Deligne, Notes sur Euler-Poincaré: brouillon project, $8/2/2011$. \uparrow 1
- [6] Q. Lu, W. Zheng, Categorical traces and a relative Lefschetz-Verdier formula, Forum of Mathematics, Sigma, Vol.10 (2022): 1-24. \uparrow 6
- [7] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones mathematicae, 207 (2017): 597-695. Ò[1,](#page-0-4) Ò[4,](#page-3-1) Ò[7,](#page-6-3) [Ò](#page-8-5)9
- [8] T. Saito, Characteristic cycles and the conductor of direct image, J. Amer. Math. Soc. 34 (2021): 369-410. ^{†2}, Ò[8,](#page-7-2) Ò[9](#page-8-5)
- [9] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε -factor of an étale sheaf, Trans. Amer. Math. Soc. 373 (2020): 6887-6927. 14
- [10] J. Xiong and E. Yang, *Milnor formula for non-isolated singularities*, preprint, 2023. \uparrow 2
- [11] E. Yang and Y. Zhao, On the relative twist formula of ℓ -adic sheaves, Acta. Math. Sin.-English Ser. 37 (2021): $73-94.$ \uparrow [6](#page-5-4)
- [12] E. Yang and Y. Zhao, Cohomological Milnor formula and Saito's conjecture on characteristic classes, 2022, [arXiv:2209.11086.](https://arxiv.org/pdf/2209.11086.pdf) \uparrow [2,](#page-1-4) \uparrow [3,](#page-2-3) \uparrow [4,](#page-3-1) \uparrow [5,](#page-4-5) \uparrow [6,](#page-5-4) \uparrow 7