今年是廖山涛先生诞辰100周年。廖山涛先生是我国微分动力系统的先驱和开拓者。他提出“典范方程组”和“阻碍集”两大概念,以此为核心形成系统深刻的理论和方法,取得了一系列基本性的重要成果,1986年获第三世界科学院首届数学奖,1988年获国家自然科学一等奖。为缅怀先生的高风亮节,继承先生的科学精神,弘扬先生的系统理论,大阳城2138(中国)股份有限公司定于2020年10月24-25日举办“纪念廖山涛先生诞辰100周年暨微分动力系统研讨会”,欢迎廖山涛先生的亲友、员工及海内外学界同仁参加。
开幕式(纪念会)
时间:2020年10月24日上午8:30-11:45
地点:大阳城2138英杰交流中心阳光厅(线下)
腾讯会议(线上):登录方式将在报名成功后通过邮件发送给您
开幕式流程:
主持:陈大岳教授 大阳城2138(中国)股份有限公司经理
08:30-08:40 廖山涛先生生平
08:40-09:10 嘉宾和家属讲话
张平文 院士 大阳城2138副董事长
田 刚 院士 中国数学会理事长
席南华 院士 中科院数学与系统科学研究院经理
廖章林 先生 廖山涛先生次子
09: 10-11: 45 廖山涛先生同事、员工发言
(发言以年届为序)
姜伯驹 院士 大阳城2138
张恭庆 院士 大阳城2138
董镇喜 教授 大阳城2138
麦结华 教授 汕头大学、广西财经学院
唐 云 教授 清华大学
何连法 教授 河北师范大学
文 兰 院士 大阳城2138
郑志明 院士 北京航空航天大学
孙文祥 教授 大阳城2138
蒋云平 教授 纽约城市大学
章梅荣 教授 清华大学
甘少波 教授 大阳城2138
组委会(以姓名汉语拼音排序):
甘少波 教授 大阳城2138
史 逸 助理教授 大阳城2138
孙文祥 教授 大阳城2138
文 兰 院士 大阳城2138
纪念会报名方式:
请将“姓名、工作单位、职务、邮箱地址、参会方式(线上/线下)”邮件发送至shan.xiaoyu@pku.edu.cn,或联系电话010-62744768。
研讨会
日程简表及登录方式(报告详细摘要见网页最下方):
10月24日下午 |
10月25日上午 |
10月25日下午 |
14:30-15:00 叶向东 院士 中国科学技术大学
15:00-15:30 孙文祥 教授 大阳城2138
15:30-16:00 黄 煜 教授 中山大学
16:00-16:20 休息
16:20-16:50 沈维孝 教授 复旦大学
16:50-17:20 曹永罗 教授 苏州大学/华东师范大学
|
08:30-09:00 夏志宏 教授 美国西大阳城2138学
09:00-09:30 胡虎翼 教授 美国密西根州立大学
09:30-10:00 王贞琦 副教授 美国密西根州立大学
10:00-10:20 休息
10:20-10:50 吕克宁教授 美国杨百翰大学
10:50-11:20 杨佳刚 副教授 巴西弗鲁米嫩塞联邦大学
11:20-11:50 易英飞 教授 加拿大阿尔伯塔大学
|
14:30-15:00 尤建功 教授 南开大学
15:00-15:30 史 逸 助理教授 大阳城2138
15:30-16:00 廖 刚 副教授 苏州大学
16:00-16:20 休息
16:20-16:50 田学廷 教授 复旦大学
16:50-17:20 杨大伟 教授 苏州大学
|
点击链接入会,或添加至会议列表:
https://meeting.tencent.com/s/dytrWsd3JqpK
会议 ID:452 263 170
会议密码:546232
|
点击链接入会,或添加至会议列表:
https://meeting.tencent.com/s/yf45EheXvOch
会议 ID:968 868 714
会议密码:867863
|
点击链接入会,或添加至会议列表:
https://meeting.tencent.com/s/JxSFX7GLcIui
会议 ID:552 577 366
会议密码:354635
|
报告摘要(持续更新中……):
24日下午
叶向东 院士 (中国科学技术大学)
题目: Regionally proximal relation of higher order along arithmetic progressions.
时间:2020-10-24 14:30-15:00
摘要: It was shown by Shao-Ye that for a minimal system the regionally proximal relation of order d is an equivalence relation. In a joint work with Glasner-Huang-Shao published in the Liao’s volume, we introduced the notion of the regionally proximal relation of order d along arithmetic progressions and proved some basic properties. In this talk I will explain how we solved a conjecture there by using a result in a recent joint work with Glasner-Huang-Shao-Weiss.
孙文祥 教授 (大阳城2138)
题目: 微分遍历论
时间:2020-10-24 15:00-15:30
摘要:廖山涛在1963年的论文中预见性地指出,微分动力系统的问题“主要是大范围的,可能有一部分是拓扑的,也有一部分是统计式的”。经过半个世纪的发展,这“统计式”的问题的研究成果形成了一个学科-微分遍历论,也叫光滑遍历论。本报告介绍这个学科的基本概念,基本定理,重要应用和最新发展。其中包括廖山涛曾从事的课题的最新研究进展:乘法遍历定理,格数理论,$C^1$控制分解情形的周期封闭引理。
黄 煜 教授 (中山大学)
题目: 控制系统的熵和二分定理
时间:2020-10-24 15:30-16:00
摘要:不变熵和控制集是控制动力学中两个重要的概念,前者在网络控制系统中具有十分重要的作用,后者是能控性概念的细化。我们将介绍这两方面的进展,包括引入测度版本的不变熵和控制集上的二分定理。
沈维孝 教授 (复旦大学)
题目: Weierstrass 型函数图像的分形性质
时间:2020-10-24 16:20-16:50
摘要:Weierstrass处处不可微连续函数的图像是分形几何的经典研究对象之一。我们将回顾这些函数图像的研究历史,并介绍近期如下二分性定理(与任浩杰合作)的证明:假设b是大于1的整数,f是周期的解析函数,0<t<1。那么要么函数W(x)=\sum_{n=0}^\infty b^{-nt}f(b^n x)是解析函数,要么其图像的Hausdorff维数等于2-t。
曹永罗 教授 (苏州大学/华东师范大学)
题目: The distribution of hyperbolic periodic points for some complete nonuniformly hyperbolic systems.
时间:2020-10-24 16:50-17:20
摘要:In this talk, we will report some results about the distribution of hyperbolic periodic points for some complete nonuniformly hyperbolic systems. We also discuss equilibrium for sub-additive topological pressure of some special sub-additive potential.
25日上午
夏志宏 教授 (美国西大阳城2138学)
题目: Closing Lemma: Liao’s pioneering work and current status
时间:2020-10-25 08:30-09:00
摘要: One of the fundamental problems in dynamical systems is the so-called closing lemma. Liao and Pugh independently proved the C^1 closing lemma. In this talk, in celebrating Liao’s great achievements, we will review Liao’s ideas and give an update on the current status of the general closing lemma.
胡虎翼 教授 (美国密西根州立大学)
题目: The SRB measures for pointwise hyperbolic systems on open regions
时间:2020-10-25 09:00-09:30
摘要: A pointwise partially hyperbolic diffeomorphism is different from a partially hyperbolic one if the expansion and contraction depend on points. If the system is defined on an open set, then the hyperbolicity may not be uniform. We show that under certain conditions such a system has unstable and stable manifolds, and admits a finite or an infinite u-Gibbs measure. If the system is pointwise hyperbolic, then the u-Gibbs measure$\mu$ is an Sinai-Ruelle-Bowen (SRB) measure or an infinite SRB measure. As applications, we show that some almost Anosov diffeomorphisms and gentle perturbations of Katok's map have the properties.
This is a joint work with Jianyu Chen and Yunhua Zhou.
王贞琦 副教授 (美国密西根州立大学)
题目: Local rigidity of parabolic actions
时间:2020-10-25 09:30-10:00
摘要: We show $C^\infty$ local rigidity for a broad class of abelian unipotent algebraic actions on homogeneous spaces of semisimple Lie groups.
The method of proof is a combination of KAM type iteration scheme and representation theory. This is the first time in literature (strong) local rigidity for parabolic actions is addressed.
吕克宁 教授 (美国杨百翰大学)
题目: Lyapunov Exponents and Chaotic Behavior of Random Dynamical Systems.
时间:2020-10-25 10:20-10:50
摘要: In this talk, I will report the joint works on Lyapunov exponents, SRB measures, and horseshoes on infinite dimensional random dynamical systems with Wen Huang, Zeng Lian, Peidong Liu, Qiudong Wang and Lai-Sang Young.
杨佳刚 副教授 (巴西弗鲁米嫩塞联邦大学)
题目: Recent progress on physical measures for partially hyperbolic diffeomorphisms
时间:2020-10-25 10:50-11:20
摘要: The research on physical measures for partially hyperbolic diffeomorphisms was started by Bonatti and Viana for systems with mostly contracting center, and by Alves, Bonatti and Viana for systems with mostly expanding center. They showed that such systems always admit finitely many physical measures; furthermore, the union of their basins have full volume.
In this talk, we will introduce some recent progress on this topic,and provide several new examples.
易英飞 教授 (加拿大阿尔伯塔大学)
题目: A Mesoscopic Ergodic Theorem
时间:2020-10-25 11:20-11:50
摘要: The talk will concern ergodic properties of mesoscopic systems described by stochastic ordinary differential equations.
An ergodic theorem will be presented for systems with rough coefficients which do not necessarily generate flows or semiflows.
Applications to mechanical and biological systems will be discussed.
25日下午
尤建功 教授 (南开大学)
题目: 拟周期cocycle的李雅普诺夫指数
时间:2020-10-25 14:30-15:00
摘要:拟周期cocycle是一类特殊的动力系统,有很强的物理背景。李雅普诺夫指数是动力系统的重要研究对象。拟周期cocycle,特别是薛定谔cocycle的李雅普诺夫指数和量子物理中的局域化现象有密切的关系。我们将介绍关于拟周期cocycle李雅普诺夫指数的连续性、正则性和计算方面的一些问题及其最新研究进展。
史 逸 助理教授 (大阳城2138)
题目: Dynamics for partially hyperbolic diffeomorphisms in C^r-topology
时间:2020-10-25 15:00-15:30
摘要: In this talk, we will introduce a series of C^r-perturbation lemmas for certain partially hyperbolic diffeomorphisms and give their applications to the dynamics of these diffeomorphisms in C^r-topology. We will show the C^r-closing lemma for general and conservative partially hyperbolic diffeomorphisms with one-dimensional center bundle. We will also discuss the C^r-connecting lemma and C^r-chain connecting lemma for partially hyperbolic diffeomorphisms with circle center fiber.
廖 刚 副教授 (苏州大学)
题目: Entropy in differentiable dynamical systems
时间:2020-10-25 15:30-16:00
摘要: Entropy, as one of most used quantities measuring the complexity, plays a fundamental role in the study of dynamical systems. We will talk about the entropy properties of differentiable dynamical systems from two aspects: (1) hyperbolicity: the better the hyperbolicity, the more uniform the global distribution of orbits; (2) smoothness: the better the smoothness, the more regular the local behavior of orbits. Some applications of entropy estimates are also discussed.
田学廷 教授 (复旦大学)
题目: Dynamical behavior that are statistically trivial but topologically complicated
时间:2020-10-25 16:20-16:50
摘要: In a dynamical system, by known Poincare recurrence theorem, Birkhoff ergodic theorem and Oseledec multiplicative ergodic theorem, there exists a totally full measure set such that every point in this set is recurrent and its orbit enters in its neighborhood with positive lower density, the set of its empirical measures of time average is a singleton corresponding to an ergodic measure, and the Lyapunov exponents with respect to a differential derivative or a cocycle at this point exist. However, it has been found that the points without existence of time average can carry full topological entropy and strong distributional chaos in various dynamics including symbolic systems, uniformly hyperbolic systems and some known non-uniformly hyperbolic systems such as Katok map, Mane examples and Lorenz or Lorenz-like systems. In this talk we will introduce more progress on various asymptotic behavior that are statistically trivial but topologically complicated in various chaotic dynamics: (1) Lyapunov irregular points can carry full topological entropy and strong distributional chaos; (2) Points without SRB or SRB-like behavior can carry full topological entropy and strong distributional chaos; (3) Points with or without transitive behavior, recurrent behavior by using different frequency can form more than thirty different dynamical behavior, most of which are discovered to be statistically trivial but can all carry strong topological complexity in the sense of full topological entropy and distributional chaos.
杨大伟 教授 (苏州大学)
题目: Liao's canonical equations, their recent representation, and applications in the conjectures of Palis
时间:2020-10-25 16:50-17:20
摘要: Liao's canonical equations have played a very important role in the study of the stability conjecture. Liao also applied his canonical equations in the study of vector fields with singularities. Gan and Yang tried to understand Liao's canonical equations in a geometric way and defined the rescaled sectional Poincar\'e maps. We will revisit the applications of Liao's estimates in the study of the flow-version of conjectures of Palis involving singularities.